Target soluble N-ethylmaleimide-sensitive factor attachment protein receptors (t-SNAREs) differently regulate activation and inactivation gating of Kv2.2 and Kv2.1: Implications on pancreatic islet cell Kv channels.
نویسندگان
چکیده
We have hypothesized that the plasma membrane protein components of the exocytotic soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE) complex, syntaxin 1A and SNAP-25, distinctly regulate different voltage-gated K+ (Kv) channels that are differentially distributed. Neuroendocrine islet cells (alpha, beta, delta) uniformly contain both syntaxin 1A and SNAP-25. However, using immunohistochemistry, we show that the different pancreatic islet cells contain distinct dominant Kv channels, including Kv2.1 in beta cells and Kv2.2 in alpha and delta cells, whose interactions with the SNARE proteins would, respectively regulate insulin, glucagon and somatostatin secretion. We therefore examined the regulation by syntaxin 1A and SNAP-25 of these two channels. We have shown that Kv2.1 interacts with syntaxin 1A and SNAP-25 and, based on studies in oocytes, suggested a model of two distinct modes of interaction of syntaxin 1A and the complex syntaxin 1A/SNAP-25 with the C terminus of the channel. Here, we characterized the interactions of syntaxin 1A and SNAP-25 with Kv2.2 which is highly homologous to Kv2.1, except for the C-terminus. Comparative two-electrode voltage clamp analysis in oocytes between Kv2.2 and Kv2.1 shows that Kv2.2 interacts only with syntaxin 1A and, in contrast to Kv2.1, it does not interact with the syntaxin 1A/SNAP-25 complex and hence is not sensitive to the assembly/disassembly state of the complex. The distinct regulation of these closely related channels by SNAREs may be attributed to differences in their C termini. Together with the differential distribution of these channels among islet cells, their distinct regulation suggests that the documented profound down-regulation of islet SNARE levels in diabetes could distort islet cell ion channels and secretory responses in different ways, ultimately contributing to the abnormal glucose homeostasis.
منابع مشابه
Modulation of Kv2.1 channel gating and TEA sensitivity by distinct domains of SNAP-25.
Distinct domains within the SNARE (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor) proteins, STX1A (syntaxin 1A) and SNAP-25 (synaptosome-associated protein-25 kDa), regulate hormone secretion by their actions on the cell's exocytotic machinery, as well as voltage-gated Ca2+ and K+ channels. We examined the action of distinct domains within SNAP-25 on Kv2.1 (volta...
متن کاملCFTR chloride channels are regulated by a SNAP-23/syntaxin 1A complex.
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediate membrane fusion reactions in eukaryotic cells by assembling into complexes that link vesicle-associated SNAREs with SNAREs on target membranes (t-SNAREs). Many SNARE complexes contain two t-SNAREs that form a heterodimer, a putative intermediate in SNARE assembly. Individual t-SNAREs (e.g., syntaxin 1A) also...
متن کاملKv2.1 channel activation and inactivation is influenced by physical interactions of both syntaxin 1A and the syntaxin 1A/soluble N-ethylmaleimide-sensitive factor-25 (t-SNARE) complex with the C terminus of the channel.
Kv2.1, the prevalent delayed-rectifier K(+) channel in neuroendocrine and endocrine cells, was suggested previously by our group to be modulated in islet beta-cells by syntaxin 1A (Syx) and soluble N-ethylmaleimide-sensitive factor attachment protein-25 (SNAP-25). We also demonstrated physical interactions in neuroendocrine cells between Kv2.1, Syx, and SNAP-25, characterized their effects on K...
متن کاملKv2.1 cell surface clusters are insertion platforms for ion channel delivery to the plasma membrane
Voltage-gated K(+) (Kv) channels regulate membrane potential in many cell types. Although the channel surface density and location must be well controlled, little is known about Kv channel delivery and retrieval on the cell surface. The Kv2.1 channel localizes to micron-sized clusters in neurons and transfected human embryonic kidney (HEK) cells, where it is nonconducting. Because Kv2.1 is post...
متن کاملSyntaxin 1A binds to the cytoplasmic C terminus of Kv2.1 to regulate channel gating and trafficking.
Voltage-gated K(+) (Kv) 2.1 is the dominant Kv channel that controls membrane repolarization in rat islet beta-cells and downstream insulin exocytosis. We recently showed that exocytotic SNARE protein SNAP-25 directly binds and modulates rat islet beta-cell Kv 2.1 channel protein at the cytoplasmic N terminus. We now show that SNARE protein syntaxin 1A (Syn-1A) binds and modulates rat islet bet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 70 3 شماره
صفحات -
تاریخ انتشار 2006